
TP040869

Adrien Poupa

Web Programming Individual Assessment Adrien Poupa TP040869

2

Table of Contents

Gantt chart Page 3

Introduction and objectives Page 4

System design

Storyboards Page 5

Flowcharts Page 8

Implementation

 Design Page 10

PHP Page 11

MySQL Database Page 11

PDO Page 12

Authentication Page 13

Tables Page 14

Permissions Page 15

Main Section Page 16

References Page 25

Web Programming Individual Assessment Adrien Poupa TP040869

3

Gantt chart

The whole development took seven weeks to complete.

Task / Week 28/03 04/04 11/04 18/04 25/04 02/05 09/05

Choose a subject

Define functionalities

Select a template

Create database and queries

Authentication system

Students CRUD

Responsibles CRUD

Professors CRUD

Intakes CRUD

Modules CRUD

Grades CRUD

Profile

Change password

Permission system

Report card

Polishing interface

Security

Web Programming Individual Assessment Adrien Poupa TP040869

4

Introduction and objectives

When the individual Web Programming Individual Assessment was first introduced, I

knew that I wanted to create a website that could be useful and reused. My first idea was a

blogging and news platform, but eventually I found that WordPress and many content

management systems such as Dotclear or Joomla! already did this so well that I could not even

start to create something that would be matching their standards.

Then I have been thinking about the extranet used both at Efrei and APU: Moodle. I

realized that nobody really enjoyed using it because of its heaviness and poor user interface,

hence my idea to create a simple and light platform to manage a university, APU in this case.

Let me be clear: I do not have the pretention to do better than Moodle in a few weeks,

I simply wanted to see if I could code a website having some of its features without being so

much heavy.

Now that it is finished (although a website is never “finished”), I can say that I am quite

pleased with the result.

Three roles are defined: the Administrator is allowed to do everything. He can add

Students and Professors, who can login after their creation. Each user can change its password

and basic information about himself such as contact details. A student can review his report

card while a professor can add grades for the students following his classes.

Intakes are defined to group students following the same classes, designed are

“modules”. Only the administrator can create, update and delete intakes and modules.

If you want to take a look at the code, you can visit the GitHub repository where I have

uploaded the code:

https://github.com/AdrienPoupa/apu-webspace

https://github.com/AdrienPoupa/apu-webspace

Web Programming Individual Assessment Adrien Poupa TP040869

5

System design

Storyboards

Login page:

Admin index:

Web Programming Individual Assessment Adrien Poupa TP040869

6

Student list:

Add a student:

The form continues with the other fields to be filled.

The other pages are similar (tables and forms) and do not need a specific storyboard.

Web Programming Individual Assessment Adrien Poupa TP040869

7

Student index:

Report card:

Web Programming Individual Assessment Adrien Poupa TP040869

8

Professor index:

Flowcharts

Login

Web Programming Individual Assessment Adrien Poupa TP040869

9

Change password

Add new student (same goes for professor, intake, modules, responsibles, grades)

Web Programming Individual Assessment Adrien Poupa TP040869

10

Implementation

I have a chosen a very simple a clean design, which makes the website easy to understand and

use. It is based on Bootstrap 3, making it easy to modify and responsive for a proper display

on cellphones and tablets. Since the audience targeted is mostly students keen on technology,

the website had to be modern and responsive, if the students wanted to check their grades

using their cellphones for example. The color scheme had to be neutral like Facebook, Twitter

or LinkedIn in order to be pleasant and comfortable: professors and administrator would use

it for a long period when entering grades into the database.

For the header, I chose to use APU’s logo followed by the mention “WebSpace 3” as

“WebSpace 2” is the version currently used. I used the logo available in the current WebSpace

and edited it with The Gimp.

Each item of the menu has an icon, provided by the CSS framework FontAwesome.

The index had to be represented by a house in my

opinion.

The student list figures a graduation cap, which is the

goal every student aims at.

Responsibles and professors share a common icon,

multiple users.

Intakes have an icon representing two tags, since an

intake is a way to label a group of modules.

Modules are represented with a building that figures

a university, since modules and their content are the

main reason why students go to the university.

Grades have an icon representing a bar-chart, since a

grade is a way to measure students’ performances.

Finally, logout is represented with a simple arrow out a square, picturing the action of leaving.

The menu is an accordion menu, which makes it more compact and user-friendly at the same

time. An arrow indicates the current status of the item.

Web Programming Individual Assessment Adrien Poupa TP040869

11

Since it is a requirement of the assessment, PHP has been used as primary scripting language.

The project has been developed using PHP version 5.5.12 but it should work on any version of

the 5.5 branch up to the PHP 7.0 branch.

MySQL has been chosen as the database used for this project, because of its free availability

and its popularity among databases systems for websites. The project has been developed

using MySQL version 5.6.17 but it should work on any version above 5.5.

The database structure is as following:

Web Programming Individual Assessment Adrien Poupa TP040869

12

To connect to the database using PHP, the PDO driver has been chosen over the deprecated

mysql_* and mysqli_* extensions, providing a better security and an object-oriented interface

to create queries with named parameters.

To prevent MySQL injections, the statements are prepared as following:

$query = $db->prepare("SELECT id_student4 FROM intake_student WHERE

id_groupe=:id");

$query->bindParam(':id', $_GET['id']);

$query->execute();

Using the bindParam method and the id named parameter, we can safely use the superglobal

$_GET within the query without minding if is $_GET[‘id’] is a valid ID or a bad character such

as a quote, which would result in a failed query and a vulnerability.

Transactions are also used in order to revert any modifications done to the database, should

the query fail. A try/catch block is used to do this: if any error is detected during the execution

of the code located within the try block, the catch block is executed right after.

try {

 $db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 $db->beginTransaction();

 $query = $db->prepare('INSERT INTO intake (name) VALUES (:name)');

 $query->bindParam(':name', $_POST['name']);

 $query->execute(); // Add the query to the queue

 $db->commit(); // Execute to the queue

} catch (Exception $e) {

 $db->rollBack(); // Revert any modifications done to the database

}

The design has been splitted in three different files within the “include” folder:

- head.php contains the HTML headers

- navigation.php contains the main menu

- footer.php closes all the balises opened above

Each publicly accessible PHP file of the project includes the three files named above as well as

the functions.php file located in the same folder. It contains all the functions used throughout

the project, such as the database connection, the redirection to another page, the validation

of a form or the redirection to the login page if the page requested is not available for the

current user.

This file includes config.php located in the same folder, which contains an array defining the

required information to connect to the database: host (usually localhost), database name,

database user and its password, making it easy to migrate on a different installation.

Moreover, it contains the administrator’s password.

Web Programming Individual Assessment Adrien Poupa TP040869

13

The authentication system is built with sessions. They have been chosen over cookies because

of their reliability: sessions are safer than cookies because the actual values are hidden from

the client.

The sessions are started in the functions.php file, just after the database connection. As a

result, they are started in every page of the application since functions.php is included in every

PHP file:

// Connect to DB

$db = connection();

// Start a session, needed for authentication

session_start();

Once the sessions are started, the authentication can be checked using the $_SESSION

superglobal. This superglobal behaves like an array shared by all the documents of the

website. It is initially filed right after the login, and the application uses three elements:

- “student_id” or “id_prof” to register the unique ID of a student or a professor

- “user”, string to be displayed in the “Welcome XXX” message

- “role”, string used to specify the role played by the user in the application: admin,

student and prof are the possible values

The login process is quite simple: first, we make sure all the fields are correctly field (ie: there

is no empty field), then we check which role the user is trying to login to. Once it is done, we

query the proper database (student or professor) to get the password and the ID of the user

the guest wants to login to.

In order to protect users’ data, their password is encrypted in database using the BCRYPT

algorithm. It creates a unique and one-way hash, making it very safe to use to encrypt

passwords.

As a result, we have to check the validity of the password entered by the guest using

password_verify. It takes two parameters: the hash stored in the database and the clear

password entered by the guest.

// Return true if the password entered matches the hashed one (2nd arg)

password_verify($_POST['password'], $student['password'])

If the functions return true, we can finally fill the $_SESSION array with the proper data

extracted from the database above and redirect the user to the homepage.

$_SESSION['id_prof'] = $prof['id_professor'];

$_SESSION['user'] = $prof['surname_professor'].' '.$prof['name_professor'];

$_SESSION['role'] = 'prof';

redirect('index');

Web Programming Individual Assessment Adrien Poupa TP040869

14

All lists (students, responsibles, professors, intakes, modules and grades) are displayed in a

table. It seemed to be the most efficient way to fit a lot of information in the minimal amount

of space possible.

In order to provide a better user experience, the javascript plugin for jQuery DataTables has

been added. It adds a search form, pagination, column ordering and a filter, without reloading

the page thanks to JavaScript. A few lines are enough to transform a table:

<script src="js/datatables/media/js/jquery.dataTables.min.js"></script>

<script>

 $(document).ready(function() {

 $('#jsTable').DataTable({

 responsive: true

 });

 });

</script>

Of course, the tables must have the ID specified above (jsTable, see below).

All the pages to add an entity (students, responsibles, professors, intakes, modules and

grades) are similar and prefixed with “add-“. They consist of inputs and dropdowns, that have

to be field. The validation is taken care of by the checkForm function, taking an array of input’s

name in argument:

// Required field names

$required = array('student', 'grade');

$error = checkForm($required);

The function itself return an array, empty or not depending of the content of the fields:

function checkForm($required) {

 if (isset($_POST['form_sent'])) {

 foreach($required as $field) {

 if (!isset($_POST[$field]) || empty($_POST[$field])) {

 $error[] = 'Please fill all the fields';

 return $error;

 }

 }

 }

}

Finally, the database transactions are done if $error is empty only.

The edition of an existing entity works almost exactly the same way, the only differences being

the filename prefixed by “edit-“, the inputs pre-filled with existing data and an UPDATE query

instead of an INSERT INTO.

Finally, the deletion happens in the edit files described above. If the argument delete is passed

along with the ID to delete, a DELETE FROM query is run in order to delete the entity.

Web Programming Individual Assessment Adrien Poupa TP040869

15

The permissions are checked with helpers functions such as checkAdmin, checkStudent or

checkProfessor. Depending on the superglobal $_SESSION[‘role’] filled after login, they

redirect to the login page if the page requested is not available for the current user. For

example, the function to check if the current user is an administrator of the application is the

following:

function checkAdmin() {

 if ($_SESSION['role'] != 'admin') {

 redirect('login');

 }

}

The redirect function is nothing else but a syntactic sugar for header(‘Location… :

function redirect($page) {

 header("Location: ".(string)$page.".php");

}

Finally, in order to protect users from XSS injections and provide a better security, the function

htmlspecialchars has to be applied everytime a data we do not control is displayed; data

entered by the user and stored in the database for example:

Welcome <?php echo htmlspecialchars($_SESSION['user']) ?>

If this was not done, the website would be prone to cross-site scripting, allowing attackers to

include third-party content to the website with dramatic consequences such as stealing

credentials in cookies or even change a page of the website.

Web Programming Individual Assessment Adrien Poupa TP040869

16

Main section

First of all, the user has to login using his credentials. He must select his role as well. The

default username and password for the admin user are “admin” and “password”. This can be

changed in the include/config.php file.

Once this is done, the administrator is redirected on the index.

Web Programming Individual Assessment Adrien Poupa TP040869

17

Then, he can access the student list, which is displayed using DataTables (see above).

It is also possible to add a student using the following form:

Web Programming Individual Assessment Adrien Poupa TP040869

18

A student can be modified by clicking its name on the table described above. He can be deleted

using the link provided in the header of the form.

The responsible features work in a similar way:

Web Programming Individual Assessment Adrien Poupa TP040869

19

Same goes for the professors.

As all DataTables, the search form works without reloading the page:

Web Programming Individual Assessment Adrien Poupa TP040869

20

Intakes work in a similar way. Each intake is displayed with the list of its students, or a mention

“None” if there is no student (yet) for an intake.

To add an intake, the administrator only need to enter its name. He can add or delete students

using the edit form.

Modules and their properties are displayed within a table. It shows modules’ names, intakes,

professor (one or more) and the grades expected for this module and their coefficient. To add

a grade, the administrator or the professor has to click the link within the coefficient column.

Web Programming Individual Assessment Adrien Poupa TP040869

21

To add a module, the administrator has to specify its name, its professors and the grades

expected. Each grade must have a coefficient and be one of the following type:

- LEC for lecture

- LAB for work in lab

- PRJ if it is a project

Of course, the sum of all coefficients must be equal to 1. Each module can have up to 5

professors and 5 grades.

Web Programming Individual Assessment Adrien Poupa TP040869

22

All the grades are displayed in a table showing the student, the module and the coefficient of

the grade.

The addition and deletion of a grade is similar to all the other features:

Web Programming Individual Assessment Adrien Poupa TP040869

23

A professor account is similar to an administrator’s. The only differences are the credentials

he has to use to login (his name and his password) and the authorizations that he has. His

index page looks like this:

Like a student, he can change his password with the following form:

Finally, he only has access to the modules he teaches:

Web Programming Individual Assessment Adrien Poupa TP040869

24

A student logins using his TP number and the password provided by the admin – or the

password he changed in the interface. His index page looks like this:

Unlike an administrator or a professor, he has access to his own profile where he can change

his personal information:

Finally, he can review his report card with the grades entered by his professor. A text indicates

if he passed the module or not with the grade letter:

Web Programming Individual Assessment Adrien Poupa TP040869

25

References

Mark Otto, Jacob Thornton, and Bootstrap contributors. 2016. Bootstrap · The world's most

popular mobile-first and responsive front-end framework. [ONLINE] Available at:

http://getbootstrap.com/. [Accessed 16 May 2016].

StartBootstrap. 2016. SB Admin 2 - Free Bootstrap Admin Theme - Start Bootstrap. [ONLINE]

Available at: http://startbootstrap.com/template-overviews/sb-admin-2/. [Accessed 16 May

2016].

Dave Gandy. 2016. Font Awesome, the iconic font and CSS toolkit. [ONLINE] Available at:

http://fontawesome.io/. [Accessed 16 May 2016].

Wikipedia. 2016. Gantt chart - Wikipedia, the free encyclopedia. [ONLINE] Available at:

https://en.wikipedia.org/wiki/Gantt_chart. [Accessed 16 May 2016].

Flowchart Maker & Online Diagram Software. 2016. Flowchart Maker & Online Diagram

Software. [ONLINE] Available at: https://www.draw.io/. [Accessed 16 May 2016].

Website Storyboarding | Examples, How To and Sitemap. 2016. Website Storyboarding |

Examples, How To and Sitemap. [ONLINE] Available at:

http://www.webhostdesignpost.com/website/websitestoryboarding.html. [Accessed 16 May

2016].

Creately Blog | Diagramming Articles and Tips on How to Draw Diagrams. 2016. Flowchart

Guide (Complete Flowchart Tutorial with Examples) Creately Blog | Diagramming Articles and

Tips on How to Draw Diagrams. [ONLINE] Available at:

http://creately.com/blog/diagrams/flowchart-guide-flowchart-tutorial/. [Accessed 16 May

2016].

php - Cookie VS Session - Stack Overflow. 2016. php - Cookie VS Session - Stack Overflow.

[ONLINE] Available at: http://stackoverflow.com/questions/6253633/cookie-vs-session.

[Accessed 16 May 2016].

Code Envato Tuts+. 2016. PDO vs. MySQLi: Which Should You Use?. [ONLINE] Available at:

http://code.tutsplus.com/tutorials/pdo-vs-mysqli-which-should-you-use--net-24059.

[Accessed 16 May 2016].

DataTables | Table plug-in for jQuery. 2016. DataTables | Table plug-in for jQuery. [ONLINE]

Available at: https://datatables.net/. [Accessed 16 May 2016].

Webspace 2. 2016. Webspace 2. [ONLINE] Available at: http://webspace.apiit.edu.my/.

[Accessed 16 May 2016].

http://getbootstrap.com/
http://startbootstrap.com/template-overviews/sb-admin-2/
http://fontawesome.io/
https://en.wikipedia.org/wiki/Gantt_chart
https://www.draw.io/
http://www.webhostdesignpost.com/website/websitestoryboarding.html
http://creately.com/blog/diagrams/flowchart-guide-flowchart-tutorial/
http://stackoverflow.com/questions/6253633/cookie-vs-session
http://code.tutsplus.com/tutorials/pdo-vs-mysqli-which-should-you-use--net-24059
https://datatables.net/
http://webspace.apiit.edu.my/

